Вариабельности

Вариабельность пульса в Apple Watch: разбираемся, что к чему!

Оценка этой статьи по мнению читателей: 4.9 (125)

Прежде чем мы перейдем непосредственно к Apple Watch и приложению Здоровье, давайте разберемся с тем, что вообще такое вариабельность пульса (ВСР, или на английском HRV — от heart rate variability).

Наше сердце работает совсем не так, как часовой механизм, или метроном. Когда мы говорим, что пульс составляет 60 ударов в минуту, это совершенно не означает, что сердце сокращается каждую секунду. В реальности, между первым и вторым ударами может пройти 0.7 секунды, между вторым и третьим – 1.3 секунды и так далее.

Вариабельность пульса – это величина, которая показывает, как сильно варьируется время между двумя последовательными сердечными сокращениями.

Если интервалы между сердечными сокращениями достаточно постоянны (например, сердце сокращается стабильно ровно 1 раз в секунду), вариабельность пульса низкая. Если длительность таких интервалов сильно варьируется (например, 1.3 секунды, затем 0.7 секунды) — вариабельность высокая.

О чем нам может рассказать вариабельность пульса?

Если говорить простым языком, вариабельность показывает общее состояние нашего организма (как в физическом, так и эмоциональном плане). Также, вариабельность сообщает важную информацию о влиянии работы нервной системы на сердечно-сосудистую. Низкий показатель вариабельности пульса может свидетельствовать о различных патологиях.

Наиболее высокие показатели вариабельности пульса можно наблюдать у спортсменов и здоровых молодых людей

Чем выше вариабельность — тем лучше

Изменение сердечного ритма — это реакция на любой раздражитель (как внешний, так и внутренний), и быстрая адаптация пульса (как и возврат его в состояние покоя) свидетельствует о хорошей работе как нервной системы, так и сердечно-сосудистой.

Другими словами, высокий показатель вариабельности — это очень хорошо. Но, низкий показатель не всегда является показателем каких-то отклонений или проблем. Зачастую низкий показатель говорит лишь о том, что здоровый организм (с хорошо работающими системами) просто испытал нагрузку и нуждается в восстановлении. Если же низкая ВСР наблюдается постоянно, либо заметна тенденция снижения — тогда есть повод для волнения.

При анализе вариабельности следует учитывать следующее:

  1. Если вы постоянно не высыпаетесь, или часто испытывается разного рода стрессы, ВСР может постепенно снижаться. В этом случае необходимо уделить внимание и время восстановлению организма.
  2. Курение и потребление алкоголя также снижает вариабельность. Поэтому, вы можете сразу наблюдать утром резкое снижение ВСР после шумной вечеринки накануне.
  3. Изматывающая тренировка, либо занятие спортом также могут снизить данный показатель. Но, обычно организм быстро самостоятельно восстанавливается.
  4. Очень интересным может быть тот факт, что перед простудой, или гриппом, ВСР может снизиться еще до появления симптомов самой болезни. Поэтому, если вы наблюдаете сниженный показатель вариабельности — не следует слишком сильно нагружать свой организм, тем самым дав ему возможность побороть простуду до того, как она испортит ваши планы.
  5. Часто низкий показатель вариабельности пульса может быть связан с недостаточным потреблением воды. Поэтому, если значение ВСР постоянно низкое, попробуйте пить больше жидкости.

Как интерпретировать и понимать вариабельность пульса, которую показывают Apple Watch?

Теперь, когда мы разобрались с этим важным понятием, давайте посмотрим, как именно Apple Watch позволяет нам следить за вариабельностью и ее динамикой. Для этого, открыв программу Здоровье, переходим в раздел Сердце:

Здесь пролистываем окошко вниз до параметра Вариабельность пульса:

На скриншоте видно, что вариабельность пульса сегодня составляет 53мс (миллисекунды). Если мы нажмем на эту большую красную область, программа покажет динамику вариабельности за день/неделю/месяц и даже год:

Выбрав под графиком раздел Показ всех данных, вариабельность будет отображена общим списком пар значений (вечерний — утренний замеры):

Какая норма вариабельности пульса?

И теперь возникает закономерный вопрос — что такое 52 миллисекунды? Это плохо (низкая ВСР) или хорошо (высокая ВСР)? Дело в том, что вариабельность пульса — это параметр, который очень сильно зависит от конкретного человека (его возраста, пола, общей физической подготовки и ряда других факторов).

РЕКЛАМА

Поэтому, вам нужно самостоятельно определить точку, от которой следует отталкиваться при анализе вариабельности своего сердечного ритма. Для этого нужно выполнить всего два простых шага:

  1. Использовать Apple Watch непрерывно хотя бы одну-две недели, чтобы собрать статистику.
  2. Каждое утро смотреть значение вариабельности пульса и оценивать свое общее состояние (чувствуете ли вы себя бодрым и энергичным, либо уставшим и измотанным).

Чем дольше вы используете Apple Watch, тем точнее сможете интерпретировать и понимать показатели вариабельности ритма своего сердца. Если говорить о конкретном примере, тогда вариабельность 52 мс — это чуть ниже среднего значения, если судить по предыдущему скриншоту, где максимальное значение равняется 99 мс, а минимальное — 21 мс.

Apple Watch замеряют вариабельность дважды в сутки — в конце дня (перед отходом ко сну) и ближе к утру (незадолго до пробуждения). Если часам не удается сделать замер, тогда время может отличаться. Вечером вариабельность практически всегда будет ниже, а ближе к утру, после отдыха, это значение должно расти.

Пример

Еще хотелось бы вернуться к предыдущему скриншоту и прокомментировать график, так как он достаточно наглядно показывает определенную закономерность:

На скриншоте видно, что с воскресенья по вторник вариабельность росла, после чего начала падать и опускалась вплоть до следующего воскресенья. Согласно показателям Apple Watch, организм с каждым днем накапливал усталость и стресс, что выражалось в постоянном понижении вариабельности пульса. Это полностью соответствует реальной ситуации.

Проанализировав эти данные, мы сможем лучше понять состояние своего организма, не дожидаясь, пока он даст сбой. Именно поэтому, вариабельность пульса — это прекрасный показатель, следить за которым можно без специального медицинского оборудования и визитов к врачу.

К слову, Apple Watch умеют измерять и другой, не менее важный, параметр вашего здоровья — VO2max!

P.S. Мы открыли Telegram-канал и сейчас готовим для публикации очень интересные материалы! Подписывайтесь в Telegram на первый научно-популярный сайт о смартфонах и технологиях, чтобы ничего не пропустить!

Вариабельность сердечного ритма: физиологические механизмы, методы исследования, клиническое и прогностическое значение

Исследование вариабельности сердечного ритма (ВСР) было начато в 1965 г., когда исследователи Hon и Lee отметили, что состоянию дистресса плода предшествовала альтернация интервалов между сердечными сокращениями до того, как произошли какие-либо различимые изменения в сердечном ритме. Только 12 лет спустя Wolf и соавторы выявили взаимосвязь большего риска смерти у больных, перенесших ИМ со сниженной ВСР. Результаты Фремингемского исследования на протяжении 4-летнего наблюдения (736 лиц пожилого возраста) убедительно доказали, что ВСР содержит независимую и находящуюся за пределами традиционных факторов риска прогностическую информацию. В 1981 г. Akselrod с коллегами использовали спектральный анализ колебаний сердечного ритма для количественного определения показателей сердечнососудистой системы от систолы к систоле.

В 1996 г. рабочая группа экспертов Европейского общества кардиологов и Североамериканского общества кардиостимуляции и электрофизиологии разработала стандарты использования показателей ВСР в клинической практике и кардиологических исследованиях, в соответствии с которыми сейчас выполняется большинство исследований. Для определения ВСР рекомендуется использовать ряд методов, обеспечивающих наиболее полный анализ при минимальных затратах методов и времени. Кроме рекомендаций относительно выбора метода оценки ВСР, в документе приведены требования к процедуре измерения всех параметров, влияющих на определение ВСР.

Определение ВСР, основные области применения метода, показания к использованию

ВCР — это естественные изменения интервалов между сердечными сокращениями (длительности кардиоцик лов) нормального синусового ритма сердца. Их называют NN-интервалами (Norman to Norman). Последовательный ряд кардиоинтервалов не является набором случайных чисел, а имеет сложную структуру, что отражает регуляторное влияние на синусный узел сердца вегетативной нервной системы и различных гуморальных факторов. Поэтому анализ структуры ВСР дает важную информацию о состоянии вегетативной регуляции сердечно-сосудистой системы и организма в целом.

Сердечные центры продолговатого мозга и моста непосредственно управляют деятельностью сердца, оказывая хронотропный, инотропный и дромотропный эффекты. Передатчиками нервных влияний на сердце служат химические медиаторы: ацетилхолин в парасимпатической и норадреналин — в симпатической нервной системе.

Можно условно выделить 4 направления применения методов анализа ВСР:

1. Оценка функционального состояния организма и его изменений на основе определения параметров вегетативного баланса и нейрогуморальной регуляции.

2. Оценка выраженности адаптационного ответа организма при воздействии различных стрессов.

3. Оценка состояния отдельных звеньев вегетативной регуляции кровообращения.

4. Разработка прогностических заключений на основе оценки текущего функционального состояния организма, выраженности его адаптационных ответов и состояния отдельных звеньев регуляторного механизма.

Практическая реализация указанных направлений открывает широкое поле деятельности как для ученых, так и для практиков. Далее предлагается ориентировочный и весьма неполный перечень областей использования методов анализа ВСР и показаний к их применению, составленный на основе анализа современных отечественных и зарубежных публикаций.

Перечень областей использования методов анализа ВСР:

1. Оценка вегетативной регуляции ритма сердца у практически здоровых людей (исход ный уровень вегетативной регуляции, вегетативная реактивность, вегетативное обеспечение деятельности).

2. Оценка вегетативной регуляции ритма сердца у пациентов с различной патологией (изменение вегетативного баланса, степень преобладания одного из отделов вегетативной нервной системы). Получение дополнительной информации для диагностики некоторых форм заболеваний, например, автономной нейропатии при диабете.

3. Оценка функционального состояния регуляторных систем организма на основе интегрального подхода к системе кровообращения как к индикатору адаптационной деятельности всего организма.

4. Определение типа вегетативной регуляции (ваго-, нормо- или симпатикотония).

5. Прогноз риска внезапной смерти и фатальных аритмий при ИМ и ИБС у больных с желудочковыми нарушениями ритма, при ХСН, обусловленной АГ, кардиомиопатией.

6. Выделение групп риска по развитию угрожаю щей жизни повышенной стабильности сердечного ритма.

7. Использование в качестве контрольного метода при проведении различных функциональных проб.

8. Оценка эффективности лечебно-профилактических и оздоровительных мероприятий.

9. Оценка уровня стресса, степени напряжения регуляторных систем при экстремальных и суб экстремальных воздействиях на организм.

10. Использование в качестве метода оценки функциональных состояний при массовых профилактических обследованиях различных контингентов населения.

11. Прогнозирование функционального состояния (устойчивости организма) при проведении профотбора и определении профпригодности.

12. Выбор оптимальной медикаментозной терапии с учетом фона вегетативной регуляции сердца. Контроль эффективности проводимой терапии, коррекция дозы препарата.

13. Оценка и прогнозирование психических реакций по выраженности вегетативного фона.

14. Контроль функционального состояния в спорте.

15. Оценка вегетативной регуляции в процессе развития у детей и подростков. Применение в качестве контрольного метода в школьной медицине для социально-педагогических и медико-психологических исследований.

Представленный перечень не является исчерпывающим и может быть дополнен.

Причины ВСР

ВСР имеет внешнее и внутреннее происхождение. К внешним причинам относят изменение положения тела в пространстве, физическую нагрузку, психоэмоциональный стресс, температуру окружающей среды.

Денервированное сердце сокращается практически с постоянной частотой. Как отмечалось выше, лабильность ЧСС обусловлена вегетативным влиянием на синусный узел. Симпатические импульсы ускоряют ритм сердца, а парасимпатические замедляют. Основная цель регуляции ЧСС — стабилизация АД. Регулируется с помощью барорефлекторного механизма, являющегося самым быстрым механизмом регуляции АД с латентным периодом около 1–2 с. Кроме вегетативных воздействий на сердце, изменения ЧСС вызывают и гуморальные факторы. Колебанием концентрации в крови адреналина и других гуморальных агентов объясняют происхождение очень медленных волн сердечного ритма (<0,04 Гц).

Механизм изменений ЧСС при дыхании связан с функционированием барорефлекторной системы стабилизации АД. Экскурсии грудной клетки и диафрагмы при дыхании приводят к колебаниям давления в грудной полости, что является возбуждающим воздействием на систему стабилизации АД. Как известно, сердечный выброс уменьшается на вдохе и увеличивается на выдохе вследствие изменения притока крови к сердцу при изменении давления в грудной полости. Это вызывает колебания АД. Непосредственное влияние на частоту сердечного ритма оказывает изменение тонуса блуждающего нерва. На вдохе происходит снижение тонуса блуждающего нерва и кардиоинтервалы сокращаются. При этом чем сильнее вагусная депрессия синусного узла, тем значительнее колебания ЧСС при дыхании. Это подтверждается тем, что атропиновая блокада блуждающего нерва приводит к резкому снижению амплитуды дыхательных волн сердечного ритма.

Известно, что при увеличении объема крови и повышении давления в крупных венах происходит повышение ЧСС несмотря на сопутствующее повышение АД — так называемый рефлекс Бейнбриджа. Этот рефлекс преобладает над барорецепторным рефлексом при увеличении ОЦК и, наоборот, уменьшение объема крови приводит к уменьшению МОК и АД, при этом отмечают повышение ЧСС.

Особое влияние на ВСР оказывает легочная вентиляция: стимуляция хеморецепторов вызывает умеренную гипервентиляцию, со стороны сердца при этом выявляют брадикардию и, наоборот, при значительной гипервентиляции ЧСС обычно возрастает.

Методы исследования ВСР

Соответственно международным стандартам ВСР исследуют двумя методами:

1) регистрация R–R-интервалов в течение 5 мин;

2) регистрация R–R-интервалов в течение суток. Краткосрочную запись чаще используют для экспресс-оценки ВСР и проведения различных функциональных и медикаментозных проб. Для более точной оценки ВСР и исследования циркадных ритмов вегетативной регуляции используют метод суточной регистрации R–R-интервалов. Однако и при суточной регистрации расчет большинства показателей ВСР проводится по каждому последовательному 5-минутному периоду. Это связано с тем, что для спектрального анализа необходимо использовать только стационарные отрезки ЭКГ, а чем длительней запись, тем чаще встречаются нестационарные процессы.

Для оценки высокочастотного компонента (HF) ритма сердца необходима запись около 1 мин, тогда как для анализа низкочастотного компонента (LF) необходимо уже 2 мин записи. Для объективной оценки очень низкочастотного компонента ВСР (VLF) длительность записи должна быть не менее 5 мин. Поэтому для стандартизации исследований ВСР при коротких записях выбрана предпочтительная длительность записи 5 мин.

Требования к краткосрочной записи ЭКГ для анализа ВСР

К исследованию необходимо приступать не ранее чем через 1,5–2 ч после приема пищи. Исследования проводят в затемненной комнате, за 12 ч необходимо отменить прием лекарственных средств, употребление кофе, алкоголя, физические и психические нагрузки. Запись регистрируют в промежутке с 9:00 до 12:00 в комфортных условиях при температуре воздуха 20–22 °С. Перед началом исследования необходим период адаптации к окружающим условиям в течение 5–10 мин. Исследование у женщин следует проводить с учетом фаз менструального цикла. Необходимо устранить все раздражающие влияния: отключить телефон, прекратить разговоры с пациентом, исключить появление в кабинете других лиц, включая медработников. Стартовое исследование проводится в положении лежа на спине или сидя с опорой на спинку стула.

Протоколы коротких записей обычно включают пробы с модуляцией дыхания: задержка дыхания с определенной частотой и глубиной; соотношение продолжительности фаз вдоха и выдоха; активный и пассивный ортостатический тесты; ручная динамометрия; вегетативные пробы (Вальсальвы, с задержкой дыхания, массаж каротидного синуса, надавливание на глазные яблоки, холодовые пробы с охлаждением лица, кистей рук и стоп); фармакологические пробы; ментальные пробы (арифметические упражнения, музыка); различные комбинации протоколов.

При суточной регистрации ЭКГ значительное влияние на анализ ВСР оказывают циркадные колебания (день — ночь) ритма сердца. Кроме того, на ВСР при этом значительно влияют такие факторы, как физическая активность пациента, различные стрессовые влияния, прием пищи, сон. Поэтому при суточном мониторировании ЭКГ необходимо вести протокол действий больного и различных факторов, влияющих на ритм сердца. При патологии необходимо определять время воздействия и выраженность различных симптомов, особенно болевых ощущений.

Эктопические сокращения, эпизоды аритмии, шумовые помехи и другие артефакты значительно снижают возможности спектрального анализа для определения состояния вегетативной регуляции функции сердца. Перед расчетом показателей ВСР необходимо удалить с записи ЭКГ артефакты и экстрасистолы. Это возможно, когда их относительное количество невелико — не более 10% всех R–R-интервалов. Артефактами принято считать R–R-интервалы, длительность которых превышает среднее значение более чем на 2 стандартных отклонения.

Методы анализа и определяемые показатели

Характеристики ВСР могут быть определены с помощью множества различных способов, каждый из которых отражает одну из сторон исследуемого явления. Обычно выделяют такие группы методов:

1) временной области (статистические и геометрические);

2) частотной области;

3) автокорреляционный анализ;

4) нелинейные;

5) независимых компонентов;

6) математическое моделирование.

Методы временной области

Исследование ВСР методом временной области включает анализ следующих показателей: SDNN — стандартное отклонение N–N- интервалов;

SDANN — стандартное отклонение средних значений SDNN из 5 (10)-минутных сегментов для средней длительности, многочасовых или 24-часовых записей;

RMSSD — квадратный корень из суммы квадратов разности величин последовательных пар N–N-интервалов;

NN50 — количество пар последовательных N–N-интервалов за весь период записи, различающихся более чем на 50 мс;

PNN50 — доля NN50 общего количества последовательных пар N–N-интервалов, различающихся более чем на 50 мс, полученного за весь период записи.

Как указывалось выше, для количественной оценки ВСР за длительный период используют также геометрический метод. Все интервалы N–N за 24 ч представляют в виде гистограммы и затем по ней производят расчеты геометрических показателей.

Наиболее часто используют триангулярный индекс ВСР (HVR index) и показатель триангулярной интерполяции гистограммы N–N (TINN). Оба показателя малочувствительны к разного рода ошибкам, возникающим при подразделении комплексов QRS на нормальные и ненормальные. Тем самым снижаются требования к качеству записи ЭКГ и ее анализу. Характеристика временных показателей представлена в табл. 4.1.

Таблица 4.1

Методы частотной области

В спектре коротких записей (от 2 до 5 мин) принято выделять 5 главных спектральных компонентов:

TH — общая мощность спектра;

VLF — очень низкие частоты в диапазоне менее 0,04 Гц;

LF — низкие частоты в диапазоне 0,04–0,15 Гц;

HF — высокие частоты в диапазоне 0,15– 0,4 Гц;

LF/HF — соотношение LF к HF.

Характеристика и определение всех спектральных показателей представлены в табл. 4.2.

Таблица 4.3

В табл. 4.3 представлены соответствия между временными и спектральными показателями ВСР.

Автокорреляционный анализ

Вычисляется автокорреляционная функция ряда R–R-интервалов, представляющая собой график коэффициентов корреляции, получаемых при его последовательном смещении на один R–R-интервал по отношению к своему собственному ряду. После первого сдвига на одно значение коэффициент корреляции настолько меньше единицы, насколько более выражены высокочастотные волны. Если в выборке доминируют медленноволновые компоненты, то коэффициент корреляции после первого сдвига незначительно меньше единицы. Последующие сдвиги ведут к постепенному уменьшению корреляционных коэффициентов. Поскольку автокорреляционная функция и спектр процесса связаны парой преобразований Фурье, использование автокорреляционного или спектрального анализа — выбор исследователя (табл. 4.4).

Методы нелинейного анализа

Многообразные влияния на ВСР, включая механизмы высших вегетативных центров, обусловливают нелинейный характер изменений сердечного ритма, для описания которого требуется использование специальных методов. Однако применение нелинейного анализа в клинической практике ограничено в связи с рядом факторов:

1) сложность как с точки зрения структурного анализа, так и с точки зрения вычислительных алгоритмов;

2) невозможность применения коротких протоколов и необходимость использования только длинных записей для анализа;

Таблица 4.4

3) отсутствие накопленной физиологической базы интерпретации результатов нелинейного анализа.

Рекомендуемые для использования показатели и методы графического анализа представлены в табл. 4.5.

Таблица 4.5

Метод анализа независимых компонентов

Поскольку определение частотных полос VLF, LF и HF при спектральном анализе ВСР достаточно условны, более правильным является разделение общей ВСР на независимые компоненты, обусловленные различными механизмами систем регуляции. Этот метод относится к нелинейным методам статистического анализа, не требует длительной записи ВСР.

Метод математического моделирования

Метод вплотную примыкает к методу анализа независимых компонентов по направленности на предварительную обработку исходного сигнала ВСР с последующим применением методов частотной области и нелинейного анализа. Метод основывается на физиологических описаниях функционирования автономной нервной системы.

Для интерпретации результатов анализа ВСР можно использовать данные о физиологических коррелятах показателей ВСР, представленные в табл. 4.6.

Таблица 4.6

ВСР у здоровых людей

ВСР у здоровых людей позволяет оценить их физиологические нормативы, определяющиеся половой принадлежностью, возрастом, положением тела в пространстве, температурой окружающей среды, психическим комфортом, временем суток, сезонностью и другими факторами.

Показатели ВСР отличаются высокой индивидуальностью, а о нарушении регуляции говорят, когда показатели выходят за пределы значений индивидуальной нормы. Половых различий у ВСР нет, хотя у женщин ЧСС выше.

С возрастом связано снижение общей мощности спектра ВСР за счет преобладающего снижения низко- (LF) и высокочастотного (HF) компонента. Поскольку снижение LF и HF происходит синхронно, то отношение LF/HF изменяется мало. Наиболее высокая мощность спектра в детском и юношеском возрасте. С возрастом реакция на модуляцию дыхания снижается, но его связывают с физиологической детренированностью (табл. 4.7).

Масса тела также влияет на ВСР: меньшая масса тела проявляется более высокой мощностью спектра ВСР и HF, а у тучных людей отмечают обратную зависимость. Суточные (циркадные) колебания ВСР проявляются большей мощностью спектра, VLF и LF в дневное время и меньшей ночью при одновременном росте HF. Этот показатель повышается до максимума в ранние утренние часы, тогда как VLF либо не изменяется, либо снижается.

Физические упражнения и спорт приводят к положительным изменениям ВСР: урежается ЧСС, мощность спектра ВСР возрастает за счет HF. Избыточные тренировки чреваты повышением ЧСС и снижением ВСР. Этим отчасти объясняется выявляемая чаще в профессиональном спорте и связанная с чрезмерными нагрузками внезапная смерть.

Частота, глубина и ритм дыхания оказывают существенное влияние на ВСР, с повышением частоты дыхания относительный вклад HF в ВСР уменьшается и отношение LF/HF увеличивается. Пробы Вальсальвы с глубоким дыханием повышают мощность спектра ВСР. Ритмичное дыхание повышает мощность спектра за счет HF.

Нормальные значения временных и спектральных показателей сердечного ритма в зависимости от возраста приведены в табл. 4.7.

Различия в значениях показателей ВСР отмечают также в периоды сна и бодрствования. В табл. 4.8 представлены показатели ВСР у здоровых людей в периоды сна и бодрствования.

Таблица 4.7

*Различия с соответствующим периодом суток группы 20–39 лет достоверны (p<0,05).

Таблица 4.8

*Различия по сравнению с периодом бодрствования достоверны (р<0,05).

Клиническая оценка показателей ВСР при различных патологических состояниях

Организованная и сбалансированная регуляция — залог качественного здоровья, повышает шансы больного на выздоровление или ремиссию. Реакция регуляторных систем на раздражители неспецифична, но высокочувствительна, и соответственно метод анализа ВСР неспецифичен, но высокочувствителен при самых разных физиологических и патологических состояниях. Однако не следует искать показатели и значения ВСР, присущие конкретным состояниям или нозологическим формам. Учитывая вышесказанное, нам представилось интересным рассмотреть некоторые особенности, выявляемые при анализе показателей ВСР при различных патологических состояниях.

Нестабильная стенокардия

У больных с нестабильной стенокардией выявляют значительное снижение показателей вариабельности сердечного ритма при суточном мониторировании ЭКГ (SDNN, SDANN, SDNNi, RMSSD, PNN50). Снижение показателей ВСР коррелирует со снижением сегмента ST на ЭКГ. Риск неблагоприятных событий (развитие ИМ, внезапной смерти) на протяжении месяца в 8 раз выше при значениях SDANN <70 мс.

ИМ

ИМ характеризуется значительным снижением показателей ВСР при суточном мониторировании ЭКГ по сравнению с ХСН. Снижение ВСР в острой фазе ИМ коррелирует с дисфункцией желудочков, пиковой концентрацией креатинфосфокиназы, выраженностью ОСН. Обоснование изменений, отмечаемых при этой патологии, исследователи видят в нарушении соотношения между симпатическим и парасимпатическим отделами нервной системы. В острый период выявляют повышение тонуса симпатической (LF) и снижение тонуса парасимпатической (HF) нервной системы. Симпатические влияния на миокард снижают порог фибрилляции, парасимпатические имеют защитный характер, повышая порог. Увеличение соотношения LF/HF определяют на протяжении 1 мес пос ле ИМ. Значительное снижение ВСР при ИМ является независимым и высокоинформативным предиктором желудочковой тахикардии, фибрилляции желудочков, внезапной смерти.

Спектральный анализ ВСР у пациентов, перенесших ИМ, выявляет снижение общей мощности спектра и его компонент. В исследовании Североамериканской группы по изучению ВСР наблюдали больных с ИМ. Было установлено, что низкие показатели ВСР при суточном мониторировании ЭКГ коррелируют с риском внезапной смерти более выражено, чем показатели ФВ, количество желудочковых экстрасистол и толерантность к физическим нагрузкам. Выделены значения мощности спектра в различных частотных диапазонах, связанных с неблагоприятным прогнозом заболевания: общая мощность спектра менее 2000 мс 2 , ULF <1600 мс 2 , VLF <180 мс 2 , LF <35 мс 2 , HF <20 мс 2 и отношение LF/HF <0,95. Низкая мощность в диапазоне VLF в большей степени, чем другие показатели, связана с возникновением внезапной аритмической смерти. Пограничными значениями выраженного снижения ВСР при оценке на протяжении 24 ч рекомендуется считать SDNN <50 мс и триангулярный индекс ВСР <15, а для умеренного снижения ВСР — SDNN <100 мс и триангулярный индекс ВСР <20.

В 1996 г. представлены результаты исследования GISSI-2, длившегося 1 тыс. дней (567 пациентов). К концу срока наблюдения умерли 52 человека, что составило 9,1%. Исследователями установлено, что при снижении PNN50 риск смерти возрастал в 3,5 раза, при уменьшении SDNN — в 3 раза, при повышении RMSSD повышается в 2,8 раза.

СН

У больных с СН выявляют значительное снижение ВСР, что обусловлено активацией симпатического отдела нервной системы и тахикардией. Изменение параметров временного анализа ВСР достоверно коррелирует с выраженностью заболевания, однако изменение параметров спектрального анализа не настолько однозначно. В исследовании зависимости между активностью парасимпатических влияний на сердце у больных с ХСН и функцией ЛЖ установлено, что степень снижения ВСР достоверно связана с ФВ. Таким образом снижение парасимпатической регуляции отражает тяжесть систолической дисфункции.

ГКМП

При ГКМП отмечают снижение общей ВСР и ее парасимпатического компонента. У больных с этой патологией ночью снижается значение LF и HF и отмечается высокий показатель LF/HF по сравнению со здоровыми. При этом наиболее выраженные значения компонента HF выявлены у больных с пароксизмами желудочковой тахикардии.

Диабетическая полинейропатия

Изменения ВСР являются ранним (субклиническим) признаком полинейропатии, что позволяет выявить это состояние еще до манифестации клинических признаков. При диабетической полинейропатии отмечают снижение мощности всех спектральных компонентов, отсутствие увеличения LF при ортостатической пробе, «нормальное» соотношение LF/HF, сдвиг влево центральной частоты компонента LF.

Нарушения ритма сердца

Отражая соотношение симпатической и парасимпатической регуляции, ВСР позволяет судить о риске возникновения опасных для жизни аритмий. Возникновению опасных для жизни желудочковых нарушений ритма, по данным J.O. Valkama, предшествует повышение общей мощности спектра прежде всего за счет его низкочастотного компонента.

В 1991 г. Farell с соавторами предоставил данные исследования ВСР у 416 пациентов с нарушениями ритма. Конечной точкой исследования было возникновение стойкой желудочковой тахикардии или фибрилляции желудочков. Установлено, что при сочетании SDNN <20 мс и желудочковой экстрасистолии более 10 в час чувствительность метода составляет 50%, а специфичность — 94%.

Антиаритмические препараты могут воздействовать на ВСР различными путями. В эксперименте показано, что гемодинамическим следствием желудочковых нарушений ритма является изменение желудочковой эфферентной активности. Следовательно, само по себе подавление аритмий может изменять показатели ВСР. В табл. 4.9 суммированы воздействия антиаритмических препаратов на ВСР.

Таблица 4.9

Заключение

Исследование ВСР является неинвазивным, чувствительным и специфичным методом диагностики дисфункции миокарда, способом оценки эффекта медикаментозной терапии. Анализ показателей ВСР позволяет выделить группу больных с высоким риском возникновения внезапной сердечной смерти, а также прогнозировать развитие заболевания.

Анализ вариабельности ритма сердца

Индивидуализированный подбор антиаритмической терапии при мерцательной аритмии (МА) до сих пор представляет собой сложную проблему. В связи с этим продолжается разработка новых неинвазивных методик, повышающих точность клинической диагностики и эффективность подбора лечебных схем. В качестве такой методики может использоваться анализ вариабельности ритма сердца (ВРС).

В основе метода вариабельности ритма сердца лежит количественный анализ RR интервалов, измеряемых по ЭКГ за определенный промежуток времени. При этом можно нормировать либо число кардиоциклов, либо продолжительность записи. Рабочая комиссия European Society of Cardiology и North American Society of Pacing and Electrophysiology предложила стандартизировать время регистрации ЭКГ, необходимое для адекватной оценки параметров вариабельности ритма сердца. Для изучения временных характеристик принято использовать короткую (5 мин) и длинную (24 ч) запись ЭКГ.

Вариабельность ЧСС может быть определена различными способами. Наибольшее распространение при анализе вариабельности ритма сердца получили методы оценки во временном и частотном диапазоне.

В первом случае вычисляют показатели на основе записи интервалов NN в течение длительного времени. Предложен ряд параметров количественной характеристики вариабельности ритма сердца во временном диапазоне: NN, SDNN, SDANN, SDNNi, RMSSD, NN > 50, pNN 50.

NN — общее количество RR интервалов синусового происхождения.

SDNN — стандартное отклонение NN интервалов. Используется для оценки общей вариабельности ритма сердца. Математически эквивалентно общей мощности в спектральном анализе и отражает все циклические компоненты, формирующие вариабельность ритма.

SDANN — стандартное отклонение средних значений NN интервалов, вычисленных по 5-минутным промежуткам в течение всей записи. Отражает колебания с интервалом более 5 мин. Используется для анализа низкочастотных компонентов вариабельности.

SDNNi — среднее значение стандартных отклонений NN интервалов, вычисленных по 5-минутным промежуткам в течение всей записи. Отражает вариабельность с цикличностью менее 5 мин.

RMSSD — квадратный корень из средней суммы квадратов разностей между соседними NN интервалами. Используется для оценки высокочастотных компонентов вариабельности.
NN 50 — количество пар соседних NN интервалов, различающихся более чем на 50 м/с в течение всей записи.

pNN 50 — значение NN 50, деленное на общее число NN интервалов.

Исследование вариабельности ритма сердца в частотном диапазоне позволяет анализировать выраженность колебаний различной частоты в общем спектре. Другими словами, данный метод определяет мощность различных гармонических составляющих, которые совместно формируют вариабельность. Возможный диапазон интервалов RR можно интерпретировать как ширину полосы частот пропускания канала регуляции сердечного ритма. По отношению мощностей различных спектральных компонент можно судить о доминировании того или иного физиологического механизма регуляции сердечного ритма. Спектр строится методом быстрого преобразования Фурье. Реже используется параметрический анализ, основанный на ауторегрессионных моделях. В спектре выделяют четыре информативных частотных диапазона:

HF — высокочастотный (0,15-0,4 Гц). HF-компонента признана как маркер активности парасимпатической системы.

LF — низкочастотный (0,04-0,15 Гц). Интерпретация LF-компоненты является более противоречивой. Одними исследователями она трактуется как маркер симпатической модуляции, другими — как параметр, включающий симпатическое и вагусное влияние.

VLF — очень низкочастотный (0,003-0,04 Гц). Происхождение VLF и ULF-компонент нуждается в дальнейшем изучении. По предварительным данным, VLF отражает активность симпатического подкоркового центра регуляции.

ULF — ультранизкочастотный (< 0,003 Гц). Для 5-минутной записи ЭКГ-оценка и интерпретация ULF-компоненты некорректна из-за нарушения требуемого соотношения между длителностью регистрации и нижней частотой спектра. Поэтому использование данной компоненты оправдано лишь при 24-часовом исследовании ЭКГ.

Спектр ритмограммы сосредоточен в узкой инфранизкочастотной области от 0 до 0,4 Гц, что соответствует колебаниям от 2,5 с до бесконечности. Практически же максимальный период ограничивается промежутком, равным 1/3 времени регистрации интервалограммы. При спектральном анализе 5-минутной записи ЭКГ можно обнаружить волновые колебания с периодами до 99 с, а при холтер-мониторировании — и циркадные с промежутками до 8 ч. Единственное ограничение состоит в требовании стационарности, т. е. независимости статистических характеристик от времени.

Основная размерность спектральных компонент выражается в мс2/Гц. Иногда они измеряются в относительных единицах как отношение мощности отдельной спектральной компоненты к общей мощности спектра за вычетом ультранизкочастотной составляющей.

Совместный временной и спектральный анализ значительно увеличивает объем информации об изучаемых процессах и явлениях различной природы, так как временные и частотные свойства взаимосвязаны. Однако одни характеристики ярко отражаются во временной плоскости, другие же проявляют себя при частотном анализе.

Выделяют две основные функции вариабельности ритма сердца: разброса и концентрации. Первую тестируют показатели SDNN, SDNNi, SDANN. 8 коротких выборках синусового ритма в условиях стационарности процесса функция разброса отражает парасимпатический отдел регуляции. Показатель RMSSD в физиологической интерпретации можно рассматривать как оценку способности синусового узла к концентрации ритма сердца, регулируемой переходом функции основного водителя ритма к различным отделам синоатриального узла, имеющим неодинаковый уровень синхронизации возбудимости и автоматизма. При увеличении ЧССнафоне активации симпатического влияния отмечается уменьшение RMSSD, т.е. усиление концентрации, и наоборот, при нарастании брадикардии на фоне повышения тонуса вагуса концентрация ритма снижается. У больных с основным несинусовым ритмом данный показатель не отражает вегетативного влияния, но указывает на уровень функциональных резервов ритма сердца в плане поддержания адекватной гемодинамики. Резкое ослабление функции концентрации при увеличении RMSSD более 350 мс у больных с гетеротропной брадиаритмией тесно ассоциировано с внезапной смертью.

Наиболее часто вариабельность ритма сердца используется для стратификации риска сердечной и аритмической летальности после инфаркта миокарда. Доказано, что снижение показателей (в частности SDNN < 100) коррелируете высокой вероятностью развития угрожающих жизни аритмий и внезапной смерти после инфаркта миокарда.

Имеются данные о том, что низкая вариабельность является предиктором патологии сердечно-сосудистой системы у практически здоровых лиц. Таким образом, уже доказана прогностическая значимость этих параметров. Однако в настоящее время ряд ограничений снижает диагностическую ценность методики. Одним из главных препятствий к широкому клиническому использованию показателей вариабельности ритма сердца является большой размах индивидуальных колебаний при одном и том же заболевании, что делает границы нормы очень расплывчатыми.

В табл. представлены нормальные параметры вариабельности ритма сердца.

Таблица.
Нормальные значения вариабельности ритма сердца

Показатель 5 мин 24 ч
SDNN 59,8 ± 5,3 141 ± 38
SDANN 44 ± 4,3 70 ± 27
SDNNi 37 ± 3,2 54 ± 15
RMSSD 42,4 ± 6,1 27 ± 12
pNN (%) 21,1 ± 5,1 9 ± 7
HF 12 ± 10 291 ± 454
LF 14 ± 1 913 ± 719
VLF Нет данных 1913 ± 1328
ULF Нет данных 16592 ± 10525
LF/HF 1,6 Нет данных

Учитывая отсутствие единых стандартов ограничений вариабельности ритма сердца, а также широкий диапазон нормы, характерный для большинства больных ИБС, мы считаем целесообразным индивидуальное изучение динамики вариабельности ритма сердца в процессе лечения по сравнению с исходными данными.

При сердечных аритмиях (экстрасистолия, мерцание и трепетание предсердий) в формировании продолжительности кардиоциклов и их последовательности принимают участие совершенно другие механизмы, отличные от регуляции синусового ритма. Поэтому современные методы анализа вариабельности ритма сердца касаются исключительно синусовых кардиоциклов. В отдельных работах предпринята попытка адаптировать методику применительно к мерцательной аритмии. Была показана возможность оценки гистографического паттерна сердца для определения динамики состояния пациентов, описаны типичные суточные гистограммы при эктопических нарушениях ритма сердца, изучены критерии сопоставимости временных показателей вариабельности ритма сердца при основном синусовом и гетеротопном ритме. Анализ несинусового ритма не отрицает оценки уровня вегетативного влияния. Показано, что вариабельность желудочковых сокращений у больных с постоянной формой мерцательной аритмии в ответ на фармакологическую вагосимпатическую блокаду имеет ту же динамику временного анализа вариабельности ритма сердца, что и в контрольной группе. При кардиологической патологии необходимо оценивать изменения любых колебаний ритма сердца, поддерживающих гемодинамику, и интерпретировать вариабельность ритма сердца не только с точки зрения возможного вегетативного влияния, но и с учетом гемодинамических воздействий колебаний сердечных сокращений.

=================
Вы читаете тему:
Вариабельность ритма сердца и ее роль в оценке эффективности лечения мерцательной аритмии.

1. Анализ вариабельности ритма сердца.
2. Методика подбора антиаритмических препаратов при мерцательной аритмии с учетом динамики ВРС.

Корнелюк И. В., Никитин Я. Г. РНПЦ «Кардиология».
Опубликовано: «Медицинская панорама» № 8, октябрь 2003.

Вариабельность сердечного ритма. Часть 1. Введение.

Введение В данной статье мы расскажем, что такое вариабельность сердечного ритма, что на нее влияет, как ее измерить и что делать с полученными данными. Статья включает небольшую практическую часть по анализу данных, которая в большей степени направлена для спортсменов, тренирующих выносливость. В первой части будет немного физиологии, во второй вы узнаете как измерять вариабельность сердечного ритма и какие использовать параметры. В следующей мы расскажем о выборе программного обеспечения и как все это использовать в тренировочном процессе. Мы постарались максимально упростить некоторые моменты, сохранив при этом основную суть. Надеюсь нам это удалось.Физиология Наш организм это отлаженная и сложная система, которая способна адаптироваться к изменениям окружающей и внутренней среды. Одной из важнейших функций организма является поддержание в очень узких специфических диапазонах основных параметров: например температуру тела, pH крови и многое другое. Вся эта структура работает автономно, она не зависит от нашего мышления, в том числе и работа сердца. Все эти процессы регуляции называются гомеостаз и являются основой функционирования живого организма.

Рисунок 1. Сердце. **

Наше сердце — это не просто насос. Это очень сложный, центр обработки информации, который общается с головным мозгом с помощью нервной и гормональной системы, а также другими путям . В статьях доступно обширное описание и схемы взаимодействия сердца с головным мозгом.

И мы так же не управляем нашим сердцем, его автономность обусловлена работой синусового узла — который запускает сокращение сердечной мышцы. Он обладает автоматизмом, то есть самопроизвольно возбуждается и запускает распространение потенциала действия по миокарду, что вызывает сокращение сердца.

Сердце работает автономно благодаря синусовому узлу.

Рисунок 2. Автономная работа сердца

Синусовый узел тоже работает сам по себе, несмотря на то, что на нем сказывается работа всего организма — центральной нервной система, вегетативной (автономной) нервной система (ВНС), а также различных гуморальных и рефлекторных воздействий.

Синусовый узел отражает работу всех регуляторных систем организма.

Работу всех регуляторных систем нашего организма можно представить в виде двухконтурной модели, предложенной Баевским Р.М. . Он предложил разделить все регуляторные системы (контуры управления) организма на два типа: высший — центральный контур и низший — автономный контур регуляции (рис. 3).

*Рисунок 3. Двухконтурная модель регуляции сердечного ритма (по Баевскому Р.М., 1979 г.) CCC — сердечно-сосудистая система.

Автономный контур регуляции состоит из синусового узла, который непосредственно связан с сердечно-сосудистой системой (ССС) и через нее с системой дыхания (С.д.) и нервными центрами, обеспечивающими рефлекторную регуляцию дыхания и кровообращения. Непосредственное воздействие на клетки синусового узла оказывают блуждающие нервы (V).

Центральный контур регуляции воздействует на синусовый узел через симпатические нервы (S) и гуморальный канал регуляции (г.к.), либо изменяет центральный тонус ядер блуждающих нервов имеет более сложную структуру, он состоит из 3 уровней, в зависимости от выполняемых функций. Уровень В: центральный контур управления сердечным ритмом, обеспечивает “внутрисистемный” гомеостаз через симпатическую систему.

Уровень Б: обеспечивает межсистемный гомеостаз, между различными системами организма с помощью нервных клеток и гуморально ( с помощью гормонов).

Уровень А: обеспечивает адаптацию с внешней средой с помощью центральной нервной системы.

Эффективная адаптация происходит с минимальным участием высших уровней управления, то есть за счет автономного контура. Чем больше вклад центральных контуров тем сложней и “дороже” организму адаптироваться.

На наше сердце основное влияние оказывает симпатическая и парасимпатическая системы (см. рисунок 4). Они являются антагонистами друг друга. Симпатическая возбуждает нас, готовит выполнять действия типа “бей-беги”: повышает частоту сердечных сокращений (ЧСС), увеличивает липолиз . Парасимпатическая же успокаивает, чсс уменьшается, усиливается моторика кишечника. На сердечную мышцу они действуют “синергично”: при увеличение активности парасимпатических волокон также наблюдается снижение активности симпатических волокон.

Рисунок 4. Блок-схема иннервации синусового узла сердца симпатической и парасимпатической системами.

Благодаря их воздействию сердечный ритм никогда не бывает постоянным. Эта изменчивость времени между каждым ударом и называется вариабельностью сердечного ритма . На записи ЭКГ это выглядит примерно так:

*Рисунок 5. Вариабельность сердечного ритма

  • Вариабельность сердечного ритма (ВСР) отражает работу всех регуляторных систем организма.

На этом наша вводная часть закончена, далее мы расскажем как получить данные, что с ними делать, как интерпретировать, какие возникают трудности и как все это применять в тренировочном процессе.

Начало Так как нам интересна работа всех регуляторных систем организма, а она отображается на работе синусового узла, крайне важно исключить из рассмотрения результаты действия других центров возбуждения, действие которых для наших целей будет являться помехой.

Поэтому крайне важно чтобы сокращение сердца запускал именно синусовый узел. На ЭКГ это будет проявляться в виде зубца P (отмечен красным цветом) ( см. рисунок 6)

Рисунок 6. Сердечный цикл с синусовым ритмом.

Запись Для записи вариабельности сердечного ритма необходим пульсометр, который выдает данные о вариабельности сердечного ритма, например Polar H7. Этого вполне достаточно чтобы получить точные цифры и свежая статья где сравнивает запись с камеры телефона

Возможны различные дефекты записи из-за:

  • плохого контакта с датчиком ( не забываем его смочить перед записью).
  • движения во время записи
  • различных мыслей

Выбираем любое программное обеспечение для записи и анализа вариабельности сердечного ритма, которое вам нравится. Об этом, позже, будет отдельная статья. Стараемся исключить все отвлекающие факторы, наша задача в идеале делать все замеры в одно и тоже время и в одном и том же комфортном для нас месте. Также рекомендую встать с кровати, сделать необходимые (утренние) процедуры и вернуться назад — это уменьшить шанс уснуть во время записи, что периодически случается. Полежать еще пару минут и включить запись. Чем продолжительней запись тем более она информативна. Для коротких записей обычно достаточно 5 минут. Есть еще варианты записи 256 RR интервалов . Хотя можно встретить и попытки оценить ваше состояние и по более коротким записям. Мы используем 10 минутную запись, хотя хотелось бы и побольше…Более длинная запись будет содержать больше информации о состоянии организма.

Анализ данных.

И так, мы получили массив RR интервалов, который выглядит примерно так: рисунок 7:

*Рисунок 7. 10 минутная утренняя запись вариабельности сердечного ритма.

Перед началом анализа нужно исключить из исходных данных артефакты и шумы (экстрасистолы, аритмии, дефекты записи и т.д.). Если это нельзя сделать, то такие данные не годятся, вероятней всего показатели будут либо завышены, либо занижены.

Далее разберем основные показатели для оценки состояния организма. **Методы временной области

** Вариабельность сердечного ритма может быть оценена различными способами. Один из самых простых способов — это оценить статистическую изменчивость последовательности RR интервалов, для этого используют статистический метод. Это позволяет количественно оценить вариабельность в определенном промежутке времени.

SDNN — стандартное отклонение всех нормальных (синусовых, NN) интервалов от среднего значения. Отражает общую вариабельность всего спектра, коррелирует с общей мощностью (TP), в большей степени зависит от низкочастотной составляющей. Также любое ваше движение во времени записи обязательно отразится на этом показателе. Один из основных показателей, оценивающий механизмы регуляции.

В статье пытаются найти корреляцию этого показателя с VO2Max.

NN50 — количество пар последовательных интервалов, которые отличаются друг от друга более чем на 50 мс.

pNN50 — % NN50 интервалов от общего количества всех NN интервалов. Говорит о активности парасимпатической системы.

RMSSD — так же как и pNN50 свидетельствует в основном о активности парасимпатической системы . Измеряется как квадратный корень из средних квадратов разностей смежных NN интервалов.

Авторы считают RMSSD и его производные одни из самых удобных параметров для оценки состояния спортсменов.

А работе оценивают динамику подготовки триатлетов на основе RMSSD и ln RMSSD за 32 недели.

Также этот показатель коррелирует с состоянием иммунной системы .

CV(SDNN/R-Rср) — коэффициент вариации, позволяет оценивать влияния ЧСС на вариабельность.

Для наглядности прикрепил файл с динамикой некоторых показателей, указанных выше, в период до и после полумарафона который был 5.11.2017.

Спектральный анализ

Если внимательно посмотреть на запись вариабельности, то можно увидеть что она меняется волнообразно (см. Рис. 8)

*Рис. 8 . Волнообразная структура сердечного ритма собаки =) Исключительно для большей наглядности

  • Чтобы оценить эти волны надо преобразовать это все в другой вид с помощью преобразования Фурье (на рис. 9 продемонстрировано применение преобразования Фурье).

*Рисунок 9. Преобразование Фурье.

* Теперь мы можем, оценить мощность этих волн и сравнить их между собой см.

*Рисунок 10. Спектральный анализ ВСР

Далее мы будем использовать следующий показатели :

HF (High Frequency) — мощность высокочастотной области спектра, диапазон от 0.15 Гц до 0.4 Гц, что соответствует периоду между 2.5 сек и 7 сек. Этот показатель отражает работу парасимпатической системы. Основной медиатор — ацетилхолин, который достаточно быстро разрушается. HF отражает наше дыхание. Точнее дыхательную волну — во время вдоха интервал между сокращениями сердца уменьшается, а во время выдоха увеличивается .

С этим показателем все “хорошо”, есть много научных статей доказывающие его взаимосвязь с парасимпатической системой.

LF (Low Frequency) — мощность низкочастотной части спектра, медленные волны, диапазон от 0.04 Гц до 0.15 Гц, что соответствует периоду между 7 сек и 25 сек. Основной медиатор — норадреналин. LF отражает работу симпатической системы.

В отличие от HF тут все сложней, не совсем ясно, действительно ли он отражает симпатическую систему. Хотя в случаи 24 часового мониторинга это подтверждается следующим исследованием . Однако в большой статье говорится о сложности интерпретации и даже опровергается связь этого показателя с симпатической системой.

LF/HF — отражает баланс симпатического и парасимпатического отделов ВНС.

VLF (Very Low Frequency) — очень медленные волны, с частотой до 0.04 Гц. Период между 25 до 300 сек. До сих пор не ясно, что он отображает, особенно на 5 мин записях. Есть статьи, в которых видна корреляция с циркадными ритмами и температурой тела. У здоровых людей наблюдается увеличение мощности VLF, которое происходит ночью и пики перед пробуждением . Это увеличение автономной активности, по-видимому, коррелирует с пиком утреннего кортизола.

В статье пытаются найти корреляцию этого показателя с депрессивным состоянием. Кроме того, малая мощность в этой полосе была связана с сильным воспалением .

Анализировать VLF можно лишь при длительных записях.

TP (Total Power) — общая мощность всех волн с частотой в диапазоне от 0,0033 Гц до 0.40 Гц.

HFL — новый показатель, базирующийся на динамическом сравнении HF и LF составляющих вариабельности сердечного ритма. Показатель HLF позволяет характеризовать в динамике вегетативный баланс симпатической и парасимпатической систем. Увеличение этого показателя свидетельствовало о преобладании парасимпатической регуляции в механизмах адаптации, снижение показателя говорило о включение симпатической регуляции.

А вот так выглядит динамика, в период выступления на полумарафоне, показателей, обозначенных выше:

И собственно динамика всех показателей разом:

В следующей части статьи мы сделаем обзор различных приложений для оценки вариабельности сердечного ритма и потом перейдем непосредственно к практике.

**Используемая литература

3. Баевский Прогнозирование состояний на грани нормы и патологии. “Медицина”, 1979. 4.Fred Shaffer, Rollin McCraty and Christopher L. Zerr. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability, 2014.

12. Buchheit M., Monitoring training status with HR measures: do all roads lead to Rome?, 2014.

16. Eckberg, D.L., Human sinus arrhythmia as an index of vagal outflow. Journal of Applied Physiology, 1983. 54: p. 961-966.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *